RAMAN INVESTIGATION OF HIGH-PRESSURE "DISORDER—ORDER" PHASE TRANSITIONS IN NH₄Br AND NH₄C1* #### Y. EBISUZAKI Department of Chemistry†, University of California, Los Angeles, California 90024, USA Received 30 January 1973 $NH_4Br\ II-V$ and $NH_4Br\ V-IV$ phase transitions and the associated Raman spectra are reported. The spectrum of $NH_4Br\ V$ and the changes accompanying the $NH_4Br\ V-IV$ transition are shown to be similar to the spectrum of "disordered" NH_4Cl "II" and to the changes at "disorder—order" NH_4Cl "II"—IV transition. ### 1. Introduction NH₄Cl and NH₄Br are two of the more extensively studied ammonium halides. Although they have several similar solid phases, the reported "disorder—order" phase transitions of the two systems are surprisingly different [1-4]. Only one "cooperative disorderorder" phase transition ("II"-IV) has been reported for NH₄Cl, while at least four such transitions between several ordered and disordered phases have been reported for NH₄Br. At atmospheric pressure, for example, three solid phases of NH₄Br (NH₄Br II, III, and IV) are known which have CsCl-like basic structural units; NH4Br II is "disordered", while $NH_4Br III (D_{4h}^7)$ and $NH_4Br IV (T_d^1)$ are ordered. A high-pressure phase (NH₄Br V) also has been reported. [5], and the phase boundaries between NH₄Br V and NH₄Br II, III and IV have been determined to 7 kbar; but no detailed spectroscopic or structural evidence has been given about NH₄Br V or about the associated high-pressure phase transitions [6] which would establish the structural relationship between NH₄Br V and other phases of the ammonium halides. This paper reports the results of studies by Raman spectroscopy of the nature of the NH₄Br II-V and NH₄Br V-IV phase transitions and on the character of the structure of NH4Br V in relation to other ammonium halide phases. The spectroscopic evidence about NH₄Br described herein, when compared with similar results about the "disorder-order" transformation of NH₄Cl at high pressures, suggests that the similarities between NH₄Br and NH₄Cl are much closer than previously supposed. The Raman spectrum of NH₄Br V and the changes of the Raman spectrum of NH₄Br which accompany the NH₄Br V-IV transition are remarkably similar to the spectrum of "disordered" NH₄Cl "II" and to the changes at the "cooperative disorder-order" NH₄Cl "II"-IV transition. This correspondence between NH₄Br V and "disordered" NH₄Cl "II" implies that there is a difference between the degrees of order of NH₄Cl "II" and NH₄Br II such that the chloride is more ordered. These results also raise questions as to whether a high-temperature phase of NH₄Cl exists which corresponds more closely to NH₄Br II than does NH₄Cl "II"; and preliminary results are reported which indicate a subtle change of the Raman spectra of NH₄Cl occurs at about 8 kbar and 355°K which may correspond to the NH₄Br II–V transition. #### 2. Experimental The variable-temperature, high-pressure optical cell and its calibration have been described previously [7]. ^{*} Supported, in part, by NSF Grant GH 33079. [†] UCLA Contribution No. 3056. One unfortunate limitation of the cell is that polarization studies are not possible due to the highly-strained state of the windows. NH₄Cl crystals were grown by vapor deposition which avoids formation of an eutetic (NH₄Cl: H₂O at 257.8°K) [8,9]. Solution-grown crystals of NH₄Br were used since none were grown successfully from the vapor phase. These bromide crystals were carefully dried for a long time under vacuum. #### 3. Results ## 3.1. The spectra and identification of NH₄Br V This discussion of the spectral characteristics of NH₄Br phases proceeds from the "disordered" NH₄Br II, which is stable at atmospheric pressure and temperatures near 300°K, to NH₄Br V and NH₄Br IV, which can be produced by isothermal compression of NH₄Br II at, e.g., 265°K. These NH₄Br results will be compared with spectral characteristics of the NH₄Cl phases; especial attention will be paid to differences between the numbers and intensities of the Ramanactive modes of the various phases and to changes of the anharmonicities of the modes that accompany the phase transformations*. Although spectra of the internal† and lattice modes change with pressure and with temperature, the largest changes occur for the low-frequency modes; and only these changes are discussed here. An interesting feature of "disordered" NH₄Br II is Fig. 1. Polarization spectra for "disordered" NH₄Br II (1 atm, 296°K) in two scattering geometry. The directions of incident and scattered light are given outside the parentheses while the corresponding polarization are placed inside. The asterisks indicate the spillover of scattering from peaks active in other scattering geometry. the well defined polarization of the spectra for both the internal and lattice modes; see fig. 1. This result is rather surprising; however, it is consistent with the depolarization factors measured by Couture and Mathieu in 1948 [13] and with recent polarization spectra for several low-frequency modes [14]. The observed Raman tensors for the fundamental modes of NH₄Br are those expected for the ordered structure $(T_{\rm d}^1)$ [15]. The tensor elements for modes which become Raman inactive at the NH₄Br V–IV transition were also evaluated from the polarization spectra and are given in table 1. Many features of the NH₄Br II polarization spectra are similar to features of the spectra of "disordered" NH₄Cl "II"; however, these phases differ significantly with respect to the number of Raman-active lattice modes and to the temperature and pressure dependences of the intensities of certain modes. For both phases, no unusual splittings of internal modes are resolved; and fairly large volume-dependent anharmonicities, as indicated by mode γ_i 's (= $\delta \ln v / \delta \ln V$) are observed. Nevertheless, as the low-frequency spectra of NH₄Br II and NH₄Cl "II" in fig. 2 indicate, the bromide lacks a peak which corresponds to the strong peak on the low-energy side of v₅(TO) of the NH₄Cl "II" spectrum. Also, there is no band in the NH₄Cl "II" spectrum which corresponds to the weak band in the NH₄Br II spectrum with off-diagonal components near 78 cm⁻¹ at 1 atm and 296°K. (This 78 cm⁻¹ band disappears, and a strong band appears on the ^{*} Except that the "cooperative order—disorder" phase transition of NH₄Cl is sharp — with a significant volume discontinuity and distinct change of the frequency of v₅(TO), for example — at 1 atm (242.6°K) and is very gradual at higher pressures (e.g., 10 kbar, 300°K) (preliminary results are given in ref. [10], see also ref. [11]), the spectral characteristics associated with the transition are essentially identical at all pressures and temperatures studied. The comparison between NH₄Br and NH₄Cl is more clear for the isothermal pathway that is adopted for this presentation than for other paths. [†] For both NH₄Cl and NH₄Br, the intensity of the LO component of the bending vibration of the NH⁴ ion, v₄(F₂), increases as the crystal orders and becomes piezoelectric. The subsidiary peak, v'₄, on the high-frequency side of v₄ disappears at the NH₄Cl "II"-IV and NH₄Br V-IV transitions respectively [12].